Эллиптический параболоид

Эллиптическим параболоидом называется поверхность второго порядка, заданная относительно специально выбранной системы координат своим уравнением: x2/p+y2/q=2z, p≥0, q>0 (1). Если p=q, то поверхность, заданная уравнением 1 называется параболоидом вращения, так как получается вращением параболы y2=2qz вокруг oz. В этом случае параметр q является параметром параболы. Пусть q>p. Если точка (x, y, z) лежит на поверхности эллиптического параболоида, то и точки (±x, ±y, ±z) также лежат на этой поверхности. Следовательно, плоскости xoz и yoz являются плоскостями симметрии эллиптического параболоида, а сечения, образованные данными плоскостями с поверхностью (1) — главными плоскостями. Ось oz является осью симметрии. Вершиной эллиптического параболоида называется точка пересечения поверхности с осью oz. В данном случае вершиной поверхности является точка O(0, 0, 0).

http://uchim.org/algebra-i-geometrija/jellipticheskij-paraboloid - uchim.org

Эллиптический параболоид

Всё для учебы » Аналитическая геометрия » Эллиптический параболоид

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:


Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Материалы по теме
Популярное